A Review of Co-saliency Detection Technique: Fundamentals, Applications, and Challenges
نویسندگان
چکیده
Co-saliency detection is a newly emerging and rapidly growing research area in computer vision community. As a novel branch of visual saliency, co-saliency detection refers to the discovery of common and salient foregrounds from two or more relevant images, and can be widely used in many computer vision tasks. The existing co-saliency detection algorithms mainly consist of three components: extracting effective features to represent the image regions, exploring the informative cues or factors to characterize co-saliency, and designing effective computational framework to formulate cosaliency. Although numerous methods have been developed, a deep review of the literatures containing the co-saliency detection technique is still lacking. In this paper, we aim at providing a comprehensive review of the fundamentals, challenges, and applications of co-saliency detection. Specifically, this paper will provide the overview of some related computer vision works, review the history of co-saliency detection, summarize and categorize the major algorithms in this research area, discuss some open issues in this area, present the potential applications of co-saliency detection, and finally point out some unsolved challenges and promising future works. We expect that this review will be beneficial for both fresh and senior researchers in this field, and researchers working in other relevant fields to have a better understanding of what they can do with co-saliency detection in the future.
منابع مشابه
Graph-based Visual Saliency Model using Background Color
Visual saliency is a cognitive psychology concept that makes some stimuli of a scene stand out relative to their neighbors and attract our attention. Computing visual saliency is a topic of recent interest. Here, we propose a graph-based method for saliency detection, which contains three stages: pre-processing, initial saliency detection and final saliency detection. The initial saliency map i...
متن کاملA Saliency Detection Model via Fusing Extracted Low-level and High-level Features from an Image
Saliency regions attract more human’s attention than other regions in an image. Low- level and high-level features are utilized in saliency region detection. Low-level features contain primitive information such as color or texture while high-level features usually consider visual systems. Recently, some salient region detection methods have been proposed based on only low-level features or hig...
متن کاملCompressed-Sampling-Based Image Saliency Detection in the Wavelet Domain
When watching natural scenes, an overwhelming amount of information is delivered to the Human Visual System (HVS). The optic nerve is estimated to receive around 108 bits of information a second. This large amount of information can’t be processed right away through our neural system. Visual attention mechanism enables HVS to spend neural resources efficiently, only on the selected parts of the...
متن کاملUsability of Cluster Based Co-Saliency in Video Foreground Detection
Ability of human visual system to detect prominent regions in an image is fast, reliable and efficient. Computational modeling of this extraordinary behavior is termed as saliency detection. Saliency detection identifies salient regions in an image and is relevant in many computer vision applications such as object recognition, image segmentation, image retrieval etc. The term co-saliency can b...
متن کاملCo-Saliency Detection within a Single Image
Recently, saliency detection in a single image and co-saliency detection in multiple images have drawn extensive research interest in the vision community. In this paper, we investigate a new problem of co-saliency detection within a single image, i.e., detecting within-image co-saliency. By identifying common saliency within an image, e.g., highlighting multiple occurrences of an object class ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1604.07090 شماره
صفحات -
تاریخ انتشار 2016